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The effects of temperature history on the liquefaction of lignite 

were investigated using the UND hot-charge, time-sampled batch autoclave 

facility. Approximately two hundred grams of moisture- and ash-free lig­

nite, one hundred grams of water, four hundred grams of hydrogenated 

anthracene oil solvent and carbon monoxide gas were reacted in both cold- 

charge and hot-charge experiments. The oil yields and overall conver­

sions were determined by extraction with cyclohexane and tetrahydrofuran, 

respectively. Maximum operating pressures ranged from 3670 psig to 

3925 psig and the maximum reaction temperature was approximately 420°C 

in all cases.

Oil yields and overall conversion ranged from 16.0 percent to 34.3 

percent and 80.6 percent to 92.5 percent, respectively. Increasing the 

hot-charge temperature above 320°C significantly increased the oil yields 

and conversions. The increased oil yields and conversions were due to 

the increase in time at temperatures above 360°C. Increasing the hot- 

charge temperature above 360°C did not change the oil yields or conver­

sions. The oil yields and conversions for the cold-charge, slow-cooling 

runs were found to be similar to the results obtained by hot-charging 

the feed slurry at temperatures above 360°C. The unchanged conversions 

and oil yields were the result of the time above 360°C being longer than 

necessary for the liquefaction reactions to reach completion.
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ABSTRACT

The effects of temperature history on the liquefaction of lignite 

were investigated using the UND hot-charge, time-sampled batch autoclave 

facility. Approximately two hundred grams of moisture- and ash-free lig­

nite, one hundred grams of water, four hundred grams of hydrogenated 

anthracene oil solvent and carbon monoxide gas were reacted in both cold- 

charge and hot-charge experiments. The oil yields and overall conver­

sions were determined by extraction with cyclohexane and tetrahydrofuran, 

respectively. Maximum operating pressures ranged from 3670 psig to 

3925 psig and the maximum reaction temperature was approximately 420°C 

in all cases.

Oil yields and overall conversion ranged from 16.0 percent to 34.3 

percent and 80.6 percent to 92.5 percent, respectively. Increasing the 

hot-charge temperature above 320°C significantly increased the oil yields 

and conversions. The increased oil yields and conversions were due to 

the increase in time at temperatures above 360°C. Increasing the hot- 

charge temperature above 360°C did not change the oil yields or conver­

sions. The oil yields and conversions for the cold-charge, slow-cooling 

runs were found to be similar to the results obtained by hot-charging 

the feed slurry at temperatures above 360°C. The unchanged conversions 

and oil yields were the result of the time above 360°C being longer than 

necessary for the liquefaction reactions to reach completion.
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CHAPTER I

INTRODUCTION

Even with the current glut of oil and natural gas on the market, 

our national energy problems still exist. Approximately thirty-three 

percent of our crude oil requirements were being imported which caused 

a massive energy trade deficit of fifty billion dollars in 1981 (1).^

This trade deficit has been economically damaging to the United States 

economy. The U.S. also finds itself in a dangerous position since most 

of the imported oil comes from a politically unstable region of the 

world (Middle East). It is estimated that the world's oil reserves will 

be depleted by the year 2100 if the world's oil consumption continues 

at such high rates (2). This has caused the search for alternative 

sources of energy to increase dramatically in the United States. The 

high energy density and ease of transporting make liquid fossil fuels 

the most preferable alternate energy source.

One source of these liquid fuels is available in the United States' 

large coal resources which are estimated at well over 2000 billion tons

(3) . Of these resources, North Dakota contains 350 billion tons of lig­

nite making the state the largest single reservoir of coal in the U.S.

(4) . Because of its high reactivity and moisture content, relative 

abundance and its ease in strip mining, lignite is especially suitable

lumbers in parentheses refer to items on the List of References 
at the end of this paper.

1
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for certain coal liquefaction processes.

From a chemical viewpoint, the principal differences between coal 

and petroleum are ultimately all due to the much lower hydrogen to carbon 

(H/C) ratio of coal (approximately 0.7 as against more than 1.2 for 

petroleum); and it is therefore possible to transform coal into liquid 

hydrocarbons by direct hydrogenation. Most direct coal liquefaction 

processes react coal, a hydrogen donor solvent, and large quantities 

of hydrogen gas in the presence of a catalyst at high temperature and 

pressure. The high temperatures cause the coal to fragment and the 

resulting coal radicals react with hydrogen to produce lower molecular 

weight molecules with higher H/C ratios. The second generation direct 

liquefaction processes currently being developed are descendent from 

the Bergius hydrogenation process developed in pre-World War II Germany

(5). Some of these major liquefaction processes include the H-Coal,

Exxon Donor Solvent (EDS), Synthoil, and the Solvent Refined Coal (SRC) 

processes (6).

In order to eliminate the need for expensive hydrogen gas that 

the above liquefaction processes require, the CO-STEAM process was 

developed using carbon monoxide or synthesis gas (a mixture of carbon 

monoxide and hydrogen) and the inherent moisture present in the coal to 

produce lower molecular weight molecules and increase the H/C ratio.

The use of carbon monoxide and steam has been found to give similar or 

better conversions and oil yields for low-rank coals than does hydrogen 

under similar conditions (7).

The intended purpose of this research is to determine the effects 

of temperature history on the liquefaction of a North Dakota lignite 

using carbon monoxide and steam.
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CHAPTER II

HISTORY OF THE CO-STEAM PROCESS

Early work concerning the use of carbon monoxide and water to liq­

uefy coal dates back to 1921 when F. Fischer reported that higher yields 

of ether-soluble material could be obtained from coal when carbon monox­

ide and water were used than when hydrogen was used under similar condi­

tions (8). Fischer suggested that the higher conversions were caused by 

the liberation of nascent hydrogen generated by the water-gas shift reac­

tion. Relatively low conversions (^35%) and the discovery of the 

Fischer-Tropsch reaction caused the carbon monoxide and water approach 

to be ignored after 1925.

Research in the use of carbon monoxide and water to liquefy low 

rank coals was begun at the Pittsburgh Energy Technology Center (PETC) 

in 1968 using batch autoclave experiments (9,10). The objective of this 

research was to convert lignite into low-sulfur fuel oil. Appell and 

co-workers at the PETC reported that conversions of lignite into benzene 

soluble material were higher using carbon monoxide and steam than those 

obtained using hydrogen at similar conditions. The use of carbon monox­

ide and steam was also found to give higher rates of solubilization than 

was possible when using hydrogen even at higher pressures. At short 

contact times (approximately 10 min.), the solubilization of lignite 

using carbon monoxide and steam was found to occur at approximately 

twice the rate as compared with using hydrogen. It was also reported

3
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that the rate of formation of benzene-soluble material using carbon mon­

oxide and water decreased with increasing rank of the coal and with 

increasing oxidation of the coal (11). The conversion of lignite in­

creased with the carbon monoxide and steam partial pressures up to an 

initial cold pressure of 1500 psig (11). This initial pressure usually 

resulted in an operating pressure near 5000 psig. The optimal tempera­

ture range was found to be 380-400°C (11).

It was postulated that the increased conversions of the lignite 

were caused in part by: "A) hydrogenation with activated hydrogen pro­

duced "in situ" by the water-gas shift reaction, B) the introduction of 

alkyl groups, C) the unique ability of carbon monoxide to cleave certain 

types of bonds or to inhibit condensation reactions leading to benzene- 

insoluble materials" (12). The inherent alkaline material in the lig­

nite was found to react with carbon monoxide to produce formates which 

can donate hydrogen to the lignite. The reactivity of carbon monoxide 

was later thought to be because of its ability to remove cross-linking 

more than any ability to cleave bonds in lignite (7).

In subsequent work at the PETC, carbon monoxide was replaced with 

synthesis gas. Synthesis gas was used to reduce the cost of the reac­

tion gas and to improve the viscosity and molecular weight characteris­

tics of the product slurry so that recycle operations could be used in 

a continuous process. Increasing the temperature and pressure reduced 

the viscosity of the product slurry but also gave reduced oil yields. 

Optimal conditions for obtaining acceptable oil yields with the desired 

low viscosity was a temperature of 450°C and operating pressures greater 

than 3000 psig (7).
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A 4 lb/hr continuous process unit (CPU) was developed and run at 

the PETC using carbon monoxide, and 0.7 : 1.0 CO and 3.0 : 1.0 CO

mole ratios of synthesis gas (13). Higher pressures increased oil yields 

using any of the three reducing gases. Increasing the temperature above 

400°C was reported to adversely affect the oil yields for the carbon 

monoxide atmosphere and have no effect on the oil yields using the 0.7 

: 1.0 CO synthesis gas. The oil yields increased with increasing 

temperature using the 3.0 : 1.0 CO synthesis gas.

The Colorado School of Mines did research using carbon monoxide 

and steam in the liquefaction of a West Virginia bituminous coal (14). 

Results indicated that conversion of coal to a benzene-soluble material 

increased with increasing reaction temperature in the investigated tem­

perature range of 375 to 475°C. The removal of sulfur was found to 

increase with increasing temperature but the removal was not as high as 

was found when using hydrogen.

Berg and his group at Montana State University have also been 

researching coal liquefaction using carbon monoxide (3,15,16). The 

results obtained indicated that increasing pressure and temperature will 

increase the conversion of subbituminous coal to a benzene-soluble mate­

rial. Increasing temperature also caused the gas yield to increase.

Prior oxidation of the coal was found to decrease conversions. Sodium 

carbonate and other alkaline materials were shown to catalyze the water- 

gas shift reaction and solubilization reactions thereby increasing the 

conversions.

Work on solvent-hydrogenation of lignite at the University of 

North Dakota (UND) was initiated in 1965 under the sponsorship of the 

Great Northern Railway Co. (now merged into the Burlington Northern)(17).
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From 1965 to 1970, batch autoclave runs using carbon monoxide and/or 

hydrogen were carried out in an effort to provide engineering data nec­

essary for the construction of a CPU. After interim support from the 

Pittsburg and Midway Coal Mining Company, a 5 year contract was negoti­

ated in April of 1972 between the UND Chemical Engineering Department 

and the U.S.D.I. Office of Coal Research for a comprehensive research 

program of lignite technology (17). This program (Project Lignite) 

operated a 0.6 ton coal/day process development unit (PDU) designed for 

the continuous donor solvent liquefaction of lignite in a carbon monox­

ide and/or hydrogen atmosphere to produce a low sulfur and ash fuel 

(4,18). This fuel known as Solvent Refined Lignite (SRL) had a melting 

point between 150 and 200°C and could either be catalytically hydrogen­

ated to a premium liquid fuel or used directly as a boiler fuel.

The CO-STEAM liquefaction research facilities established at the 

Grand Forks Energy Technology Center (GFETC) since 1975 have included a 

unique hot-charge and time-sampled batch autoclave system, a five lb. 

coal/hr CPU for studying lined out operation in various reactor flow 

configurations, and an array of analytical instrumentation for deter­

mining elemental and molecular compositions (19,20). From the work done 

on the hot-charge time-sampled batch autoclave, the average molecular 

weight of the product slurry was found to decrease with increasing tem­

perature. Increasing temperature also caused an increase in gas produc­

tion (methane) most of which came from the solvent and not the coal 

itself. This highlights the fact that residence times should be kept 

to a minimum to avoid losses of solvent to the production of methane. 

Experimental work was also done on the rates of reaction using carbon 

monoxide and/or hydrogen. This work showed that carbon monoxide
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undergoes reactions with lignite that are kinetically more favorable 

than those using hydrogen in the temperature range of 350 to 480°C (21). 

It was also shown that the rate controlling step in the liquefaction 

process appeared to be the rate of chemical reaction (19).

Various runs were made on the CPU to determine the effects of 

temperature and slurry-coal concentration on the liquefaction yields 

and product quality (20). The results indicated that the coal-slurry 

concentration had no effect on the conversion of lignite into a tetra- 

hydrofuran (THF) soluble material. The conversion of lignite was found 

to increase with increasing temperature using a equimolar synthesis gas. 

Increasing the reaction temperature resulted in a decrease in the aver­

age molecular weight of the product slurry and an increase in the yield 

of hydrocarbon gases (20).
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CHAPTER III

EXPERIMENTAL PROCEDURES AND CALCULATIONS

Materials

The lignite used in this investigation was obtained from the 

Indian Head Mine of the North American Coal Company located near Zap in 

Mercer County, North Dakota. The size distribution, proximate and ulti­

mate analyses of the Zap lignite are given in Table 1. To keep the frac­

tion of water present in the feed slurry constant, the as-received 

lignite was air dried from approximately 31.5 weight percent to 30.0 

weight percent moisture. After air drying the lignite was double- 

wrapped in plastic bags with as much air as possible forced out of the 

bags. This was done to prevent additional drying and air oxidation of 

the lignite.

The solvent used in the feed slurry was a catalytically hydrogen­

ated anthracene oil produced during Run 61 (HAO-61) from the CPU at the 

GFETC. Analyses of HAO-61 and the initial anthracene oil obtained from 

batch number four (AO-4) are shown in Table 2.

The histological grade THF, reagent grade cyclohexane, and C.P. 

grade methanol used in the extractions of both the lignite product and 

condensate from the cold traps were purchased from the Fischer Scientif­

ic Company. The carbon monoxide was obtained in 1500 psig cylinders 

from the Linde Division of Union Carbide.

8



www.manaraa.com

9

TABLE 1

ANALYSES OF ZAP LIGNITE

Size Distribution

U.S. Screen Size Percent Passing

60 mesh 100.0
100 mesh 97.5
150 mesh 87.3
170 mesh 75.7
200 mesh 62.8

Proximate Analysis a

Constituent Percent

Volatile Matter 33.6
Moisture 30.6
Fixed Carbon 28.1
Ash 7.7
TOTAL 100.0

received basis

Ultimate Analysis b

Constituent Percent

Carbon 62.1
Hydrogen 3.81
Nitrogen 1.02
Sulfur 1.03
Oxygen (by diff.) 21.0
Ash 11.1

^moisture free basis
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TABLE 2

ANALYSIS OF SOLVENTS

Solvent A04a HA061b

ASTM D-1160 Distillation 0 5 torr

IBP, °C 94 42
Vol. % off at, °C 135 93
10 146 107
20 163 122
30 175 134
40 185 144
50 195 152
60 205 161
70 217 175
80 231 182
90 251 207
95 276 252
Max. Temp., °C 288 273
Vol. % off at Max. Temp 96.5 97

Calculated from ASTM D-1160

IBP - 120°C Fraction, Wt. % 3.1 19.2
120 - 260°C Fraction, Wt. % 85.0 77.5
260°C - Max. Temp. Fraction, Wt. 1 7.6 1.3
Vacuum Bottoms, Wt. % 4.3 2.0

Density, gms/ml 0 RT
1.11 1.05

Element Analysis

Carbon, Wt. % 90.2 90.3
Hydrogen, Wt. % 5.94 6.99
Nitrogen, Wt. % 0.83 0.37
Sulfur, Wt. % 0.68 0.15
Oxygen, Wt. % (by difference) 2.38 2.20

H/C Ratio 0.79

aAs-received anthracene oil from Crowley Tar & Chemical.

0.93

^Anthracene oil catalytically hydrogenated in Continuous 
Unit Run 61 at Grand Forks Energy Technology Center.

Process
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Equipment

The equipment used was UND's hot-charge, time-sampled batch auto­

clave system which has been described in more detail in Appendix 1. Ap­

pendix 1 is a copy of a report on the facility prepared by Rindt, Sever­

son and Souby for presentation at the 88th National AICHE meeting on 

June 8-12, 1980 at Philadelphia, Pennsylvania. The system consisted of 

a one gallon magnetically stirred autoclave rated at 5,100 psi at 510°C 

which had been adapted to allow the charging of the feed slurry to the 

preheated and pressurized autoclave. The autoclave had also been modi­

fied to allow samples of both the liquid and gas products to be obtained 

throughout the run. An in-line gas chromatograph had been installed to 

allow the time-sampled gases to be analyzed without intermediate han­

dling. The slurry charge vessel was a one gallon stainless steel accu­

mulator equipped with a movable 4-inch piston and was rated at 10,000 

psi at room temperature. The gas compression system consisted of two 

2.5 gallon piston accumulators also rated at 10,000 psi at room tempera­

ture. A high-pressure, positive-displacement, packed-plunger, metering 

hydraulic pump was used to supply the high pressure oil to both the 

slurry charge and gas compression systems. The quench vessel used was 

a 2.5 gallon autoclave.

Slurry Preparation

The moisture and ash contents of the Zap lignite were determined 

by the American Society for Testing Materials (ASTM) procedures D3173 

and D3174, respectively (22,23). From the moisture and ash determina­

tions, enough feed slurry with a water to moisture- and ash-free (MAF) 

lignite to HAO-61 solvent ratio of 100 : 200 : 400 was prepared allow­

ing a total of approximately 200 gms MAF lignite to be charged. The
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feed slurry was prepared using a top loading balance which weighed ac­

curately to the nearest tenth of a gram.

Procedure for Cold-Charge Runs

In cold-charge runs, the feed slurry was placed directly into the 

autoclave and the autoclave was then sealed and evacuated of gas. Suf­

ficient carbon monoxide to obtain an initial pressure of 1050 psig was 

charged to the autoclave and the heaters and stirrer were turned on.

To have the temperature peak at the desired maximum temperature of 420°C 

in the slow cooling runs, it was necessary to shut the heat off 8°C be­

fore reaching 420°C. The insulation was removed from the head of the 

autoclave as soon as the maximum temperature was reached and the auto­

clave was allowed to cool to 204°C at which point the product gas was 

removed.

After the product gas was removed, 400 psig of dry nitrogen was 

charged to the autoclave and the autoclave was allowed to cool over­

night. The next day, the product slurry was placed in a preweighed 

sample container and the remaining product slurry residue was collected 

using preweighed disposable wipes.

Procedure for Hot-Charge Runs

In hot-charge runs, the autoclave was sealed, evacuated, and heat­

ed to the hot-charge temperature. The carbon monoxide was slowly 

metered into the preheated autoclave and the autoclave temperature was 

allowed to stabilize 20°C over the desired hot-charge temperature to 

compensate for the temperature drop which occurred when the feed slurry 

was charged to the autoclave. The reaction time for the hot charge runs 

was defined as starting when the feed slurry had reached a temperature 

20°C below the desired hot-charge temperature. This reaction time was
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determined by measuring the time necessary for the first run (M4), which 

was hot-charged at 320°C, to heat up from 300°C to 420°C. The reaction 

time was determined to be 34 minutes and this time was used as the reac­

tion time for the remaining two hot-charge runs. The second run was 

hot-charged at 360°C and heated to 420°C. The product slurry was then 

held at 420°C until the total time above 340°C was 34 minutes. The third 

run was hot-charged at 420°C and held above 400°C for the 34 minute reac­

tion time. After the 34 minute reaction period, the product slurry was 

discharged from the bottom of the autoclave into a quench vessel where 

the slurry and gas were cooled to room temperature in a matter of minutes.

After allowing 30 minutes for the product slurry and gas tempera­

tures to stabilize, the product gas was withdrawn from the quench ves­

sel. The product slurry was removed from the quench vessel and stored 

in a preweighed sample container. Residue remaining in the quench ves­

sel and the autoclave was then collected using preweighed disposable 

wipes. Feed slurry remaining in the charge vessel and valves was also 

collected using preweighed disposable wipes in order to determine the 

mass of slurry charged to the autoclave.

Analytical Procedure

The product slurry and gas were analyzed according to the flow­

sheet shown in Figure 1. The product gas was analyzed within 24 hours 

of a run to reduce any air dilutions that might occur because of an un­

detected leak in the sample bag. The product slurry was well mixed us­

ing a Fischer steadi-speed adjustable stirrer to ensure a uniform sample 

was obtained for each analysis. In between analyses, the air-tight 

sample container was kept sealed to prevent oxidation or drying of the 

product slurry.
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Figure 1. Analytical Procedure Flowsheet.
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Figure 1 Continued.
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Product Gas Analysis

The product gases were bled from the autoclave or quench vessel 

through three cold traps in series; the first was in an ice bath while 

the next two were in isopropanol-dry ice baths. Then the gas was drawn 

through a dry gas flowmeter and totalizer into a 15 cu. ft. sample bag.

A Hewlett Packard F and M Scientific 700 Laboratory Chromatograph with 

Porapak Q and 5 A Mole Sieve columns were used to determine the concen­

trations of H^j N£» 02, CO, CO^, CH^, C2Hg and CgHg in the product gas. 

Hydrogen sulfide was determined using a modified ASTM D2385 method (24). 

Ammonia was measured using a modified Nessler's method for ammonia 

determination in aqueous solution (25). Specific gravity of the gas 

was determined by the Reanault method using a gas density bulb (26). 

Appendix 2 contains a summary of the laboratory procedures used in the 

hydrogen sulfide, ammonia, and specific gravity determinations. After 

all analyses were performed, the volume of the remaining gas was mea­

sured using a Scientific Precision Co. Wet-test flowmeter to compare 

the volume with that measured using the in-line volumetric flowmeter.

Cyclohexane and THF Extractions

Approximately 1.0 grams of product slurry weighed to the nearest 

0.1 mg was extracted with approximately 100 ml. of cyclohexane. The 

extract was pressure filtered through a preweighed 0.5 micron filter 

(Millipore, type FH) using dry nitrogen gas at 25 psig. The residue 

was washed with additional cyclohexane (approximately 100 ml.) until 

the wash liquid was clear. The filter cake was then dried in an oven 

at 105°C for 15 minutes and weighed. The residue and filter paper from 

the cyclohexane extraction were extracted with 100 ml. of THF and then
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pressure filtered through another preweighed 0.5 micron filter using 

dry nitrogen gas at 25 psig. The filter cake was then washed with more 

THF (about 100 ml.) until the wash liquid was clear. The filter cake 

and filter papers were dried in an oven at 105°C for 15 minutes and re­

weighed.

Moisture Determinations

The Karl Fischer method was used to determine the moisture content 

of both the product slurry and the condensate collected in the cold 

traps (27). In determining the moisture content of the product slurry, 

a known weight of the slurry was added to an anhydrous chloroform- 

methanol solution using a disposable pipet. This solution was then 

titrated with Karl Fischer reagent until the water-free endpoint was 

reached. For the slow-cooling runs in which the gas was taken off at 

204°C thereby causing the product slurry to contain little water, the 

titrations were performed in a Photovolt Aquatest IV automatic titrator. 

The quenched runs which would contain more water were titrated using a 

standard 50 ml. buret.

In determining the moisture content of the condensate from the 

cold traps, the condensate was mixed with reagent grade methanol of 

known moisture content in approximately a 1 : 15 weight ratio. The 

condensate and methanol were well mixed and allowed to sit for several 

hours to ensure that all the water was absorbed by the methanol. A 

known weight of the methanol was added to the anhydrous chloroform- 

methanol solution using a micropipette. This solution was titrated with 

Karl Fischer reagent in a Photovolt Aquatest IV automatic titrator. All 

titrations were repeated until a minimum of three trials differing by
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less than two percent were obtained.

Net Yield and Overall Conversion Calculations

The net yield of oil was defined as the weight ratio of the MAF 

cyclohexane solubles to the MAF lignite charged expressed as a percent. 

Cyclohexane was chosen as the solvent based on previous work done at 

UND (28). It was found that the oil yield determined by the extraction 

with cyclohexane closely correlated to the oil yield determined by 

microdistillation at 250°C and 1 torr.

The net yield of SRL was the weight of material soluble in the 

THF but insoluble in cyclohexane expressed as a percent of the MAF lig­

nite charged.

The net yield of insoluble organic matter (IOM) was defined as 

the weight of the ash-free portion of the THF insolubles expressed as 

a weight percent of the MAF lignite charged.

The water, ash, and gas net yields were defined by the following 

general equation:

.. . v . , . mass component out - mass component in (100)
Net n e  a mass MAF 1 ignite in

The overall conversion was defined as 100 minus the IOM net yield 

or from the following equation:

conversion = mass MAF lignite in - mass MAF THF insolubles out (100) 
mass MAF 1 ignite in
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CHAPTER IV

RESULTS AND DISCUSSION

The experimental conditions for each run are summarized in Table 

3. A summary of the net yields, overall conversions, and the material 

balance closure for each run is given in Table 4. The sample net yield 

calculations for run Ml are shown in Appendix 3. The computer program 

used to perform the net yield calculations and the definitions of the 

symbols used in the program are shown in Appendix 4. Appendix 5 contains 

the data sheets and the computer printouts for each run.

Reproducability

The closure of the material balance was used to check the experi­

mental technique. Closures ranged between 95.1 to 105.0 percent. Net 

yields were normalized by assuming that any loss or "gain" of material 

would be proportionally distributed between the products. The normaliza­

tion calculations are also shown in Appendix 3. As a check on experi­

mental technique, two identical cold-charge, slow-cooling runs (Ml and 

M2) were made to compare the results obtained. Since the water and oil 

net yields were drastically different, another cold-charge, slow-cooling 

run (M7) was performed and the results were found to closely agree with 

the results obtained in run Ml. Subsequently, the results from run M2 

were disregarded, although the results were shown in Table 4. The dis­

crepancy in run M2 was probably the result of a faulty moisture deter­

mination on the cold trap condensate.

20
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TABLE 3

SUMMARY OF EXPERIMENTAL CONDITIONS

Run # Temperature History Lignite
Moisture

Lignite
Ash

Maximum 
Temp. (°C)

Maximum
Pressure
(psig)

Ml Cold charge 
heat to 420°C 
slow cooling

29.9% 7.98% 419°C 3750

M2 Cold charge 
heat to 420°C 
slow cooling

30.7% 7.88% 417°C 3670

M3 Cold charge 
heat to 420°C 
quench immediately

30.3% 7.93% 420°C 3675

M4 Hot charge at 320°C 
heat to 420°C 
quench immediately 
reaction time 
= 34 min.

29.9% 7.97% 420°C 3750

M5 Hot charge at 360°C 
heat to 420°C 
hold at 420°C until 
total reaction time 
= 34 min., quench

29.9% 7.97 % 423°C 3890

M6 Hot charge at 420°C 
hold at 420°C until 
total reaction time 
= 34 min., quench

29.5% 8.03% 420°C 3925

M7 Cold charge 
heat to 420°C 
slow cooling

28.7% 8.11% 418°C 3840
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TABLE 4

SUMMARY OF NORMALIZED NET YIELDS, OVERALL CONVERSIONS AND MATERIAL BALANCE CLOSURES FOR EACH RUN

Normalized Yields Wt l of MAF Lignite
Run # Temeprature History h2o Oil SRL IOM Ash Gas % Conversion % Closure

Ml cold charge
heat to 420°C slow cooling -27.9 27.1 37.7 7.5 0.1 55.4 92.5 95.1

M2 cold charge
heat to 420°C slow cooling -10.6 10.2 41.7 8.2 -0.6 51.0 91.8 105.0

M3 cold charge 
heat to 420°C 
quench immediately

-12.8 16.0 45.7 19.4 -0.5 32.2 80.6 100.6

M4 hot charge at 320°C 
heat to 420°C 
quench immediately

- 9.9 19.1 45.4 16.4 -0.1 29.0 83.6 100.6

M5 hot charge at 360°C
heat to 420°C hold at 420°C
until reaction time = 34 min.
quench

-20.5 26.9 40.5 9.1 0.1 43.9 90.9 99.8

M6 Hot charge at 420°C
hold at 420°C until reaction
time = 34 min.
quench

-22.2 34.3 40.2 8.9 0.2 38.6 91.1 97.3

M7 cold charge
heat to 420°C slow cooling -28.2 24.6 43.1 8.6 0.4 51.4 91.4 99.1
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Effects of Temperature History

The cold-charge, slow-cooling runs (Ml and M7) remained at reac­

tion temperatures greater than 380°C for a considerably longer period 

of time than the hot-charge runs. In spite of the longer reaction time, 

the oil yields and overall conversions of the cold-charge runs remained 

essentially unchanged while the gas yields and the consumption of water 

(negative net yields) increased as compared to similar results obtained 

from the hot-charge runs M5 and M6. The similar conversions agree with 

the results obtained by Appel 1 and co-workers in which it was reported 

that the solubilization reaction is essentially complete in 15 to 20 

minutes at 380 to 400°C in the presence of a good donor solvent (11). 

Since the slurry of hot charge runs M5 and M6 were above 380°C for at 

least 26 minutes, the reaction times were long enough to have caused 

the liquefaction reactions to reach completion.

The effects of quenching can be seen by comparing the cold charge 

run that was quenched immediately at 420°C (M3) with the cold charge, 

slow-cooling runs (Ml and M7). The results show that when the product 

slurry was quenched, the overall conversion and the net yields of the 

oil and gas and the consumption of water all decreased. These results 

were due to the fact that the product slurry only spent approximately 

10 minutes in the 380 to 420°C temperature range instead of the neces­

sary 15 to 20 minutes for the solubilization reactions to have reached 

completion.

The reason for hot-charging the feed slurry to the preheated auto­

clave was to considerably reduce the time necessary for the slurry to 

reach the hot-charge temperature. This reduced the effects of any reac­

tions which were occurring while the slurry was being slowly heated to
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the hotter reaction temperature. Figure 2 shows a temperature versus 

time schematic for a typical hot-charge run (M6 in this case). It can 

be seen that in approximately 2.4 minutes, the slurry had reached the 

desired reaction temperature.

Based on the small differences between the conversions and the 

net yields of the cold charge run (M3) and the run hot charged at 320°C 

(M4) where both runs were quenched immediately upon reaching 420°C, it 

appears that the liquefaction reactions including the water-gas shift 

reaction were kinetically unreactive below 320°C. The small differences 

in the product gas composition for these two runs as shown in Table 5 

also tend to support the observation that the water-gas shift reaction 

is relatively inactive below 320°C. Prior studies have also shown the 

inactivity of the water-gas shift reaction below 325°C (2). Since the 

equilibrium constant for the water-gas shift reaction increases with 

decreasing temperature and the rate of reaction decreases with decreas­

ing temperature, the rate of reaction for the water-gas shift reaction 

was found to be the controlling step below 320°C.

The effects of increasing the hot charge temperature can be found 

by comparing runs M4, M5 and M6. Increasing the hot charge temperature 

from 320 to 360°C (runs M4 and M5 respectively) increased the overall 

conversion, oil and gas net yields and the consumption of water while 

decreasing the net SRL yields. The increased oil yields and conversions 

were due to the increased time the product slurry of run M5 was above 

360°C as compared to the product slurry of run M4. This result suggests 

that the liquefaction reactions are kinetically more favorable above 

360°C.
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Figure 2. Typical Temperature Versus Time Effect of Hot-Charging on the Feed Slurry for Run 6.
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TABLE 5

PRODUCT GAS COMPOSITION FOR RUNS M3 AND M4

Normalized Airfree Composition, mol % 
Run

Component M3 M4

O o
ro

23.5 23.3

C 2 H 6
0.13 0.08

C3H8 0.04 0.04

H 2
8.93 6.37

ch4 0.57 0.53

CO 66.8 69.6

H2S 0.01 0.18

nh3 0.01 0.01

TOTAL 100.00 100.00
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Increasing the hot-charge temperature from 360 to 420°C did not 

significantly change the conversion or the net yields of SRL, IOM, and 

water, but it did appear to have decreased the gas yields and increased 

the oil yields. These results disagree with previous results reported 

in literature which state that increasing the time at higher reaction 

temperatures should increase the gas yields at the expense of the oil 

yields (7,11,19). When the normalized net yields of run M5 were com­

pared to the net yields of run M6 which were calculated by assuming all 

the lost material in the material balance was from the product gas as 

shown in Table 6, the net yields were essentially the same for both runs. 

This similarity was consistent with the previous results obtained from 

literature. Based on the probability that most of the lost material 

was from the product gas, it would be concluded that increasing the hot- 

charge temperature from 360 to 420°C had an insignificant effect on the 

overall conversions and oil yields. This insignificant difference 

between the two runs was caused by the extended time both slurries were 

above the reaction temperature of 380°C. The times for both runs were 

well above the reaction time necessary for the liquefaction reactions 

to reach completion. A comparison of the normalized net yields for run 

M6 and the net yields for run M6 determined by assuming all lost material 

was product gas is given in Appendix 6.
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TABLE 6

NORMALIZED NET YIELDS FOR RUN M5 AND THE NET YEILDS CALCULATED
FOR RUN M6 ASSUMING, ALL LOST MATERIAL WAS PRODUCT GAS

Net Yi el ds; as Wt % MAF Lignite Charged

Run # h2o Oil SRL IOM Ash Gas % Conversion

M5 -20.5 26.9 40. 5 9.1 0.1 43.9 90.9

M6 -22.9 28.0 39. 1 8.7 -0.2 47.3 91.3
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1) The liquefaction reaction rates including that of the water- 

gas shift reaction below 320°C were sufficiently slow so as to 

be unimportant.

2) The conversions and oil yields of the cold-charge, slow-cooling 

runs were similar to the conversions and oil yields obtained for 

runs hot-charged above 360°C because the product slurry was above 

380°C for a sufficiently long time to allow the liquefaction reac­

tions to reach completion.

3) Increasing the hot-charge temperature from 320 to 360°C result­

ed in increased oil yields and conversions.

4) Increasing the hot-charge temperature from 360 to 420°C did 

not change the conversions nor the oil yields.

Recommendations

1) In order to determine more precisely the effects of hot- 

charging at 360°C and heating to 420°C, one run should be made 

hot-charging at 360°C and quenching the product slurry as soon

as it reaches 420°C. Also a hot-charge at 420°C for the same reac­

tion time should be run for comparative purposes.

2) Using carbon monoxide as the reducing gas, the minimum

29
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reaction time necessary for the liquefaction reaction to reach 

completion should be determined.

3) Because of the necessity to condense larger volumes of water 

in slow-cooling runs, the free volume for condensate collection 

should be increased.
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UND HOT-CHARGE TIME-SAMPLE BATCH AUTOCLAVE FACILITY

The University of North Dakota (UND) Chemical Engineering Depart­

ment is performing contract research with the Grand Forks Energy 

Technology Center (GFETC) on the liquefaction of low rank coals. One 

task under this contract is the design and construction of a versatile 

two autoclave system, with one autoclave run in a mode suitable for ob­

taining accurate material balances (charged cold) and the other for 

accurate kinetics data (charged hot). The autoclave facility is 

designed to meet current federal health and safety guidelines.

When operating to obtain accurate material balances (with the cold 

charge autoclave), the reactant materials, gas, solvent, and coal are 

charged to the autoclave at room temperature. The autoclave is then 

heated to the desired reaction temperature, held there for the desired 

reaction time, allowed to cool, and all products collected. This pro­

cedure allows 95 to 99 percent product recovery, and thus is quite use­

ful in obtaining material balance da t a . ^

The hot charge autoclave, operated to obtain kinetic data, is 

equipped so that the reactant materials may be charged rapidly into the 

preheated autoclave. This allows the reactants to reach operating tem­

perature in a few minutes. Both vapor and liquid phase reactants are 

sampled at intervals during the reaction to obtain data for kinetic 

studies. A hot charge, 1-liter autoclave facility operated at GFETC 

has resulted in product recoveries of 90 to 92 percent. This recovery 

is less than the 95 to 99 percent recovery reported for a cold charge 

autoclave facility operated at UND. The lower recovery for the hot
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charge system is due to unavoidable losses during sampling.

The new UND autoclave system was designed to minimize sampling 

losses and enhance charging reliability with improvements based on past 

autoclave experience. The UND autoclave facility will be discussed in 

terms of three major elements, as follows:

1. The autoclaves and primary support equipment such as the slurry 

charge and gas compression equipment,

2. The instrumentation and control equipment which includes tempera­

ture, pressure, gas and liquid phase flow measurement systems, 

and,

3. The building modification primarily related to meeting require­

ments suggested by current federal health and safety guidelines, 

as listed in the Fossil Energy Program, Environmental and Safety 

Program.

The remainder of this paper will describe the features and innova­

tions of the UND Batch Autoclave Facility.

Figure 3 is an overall flow diagram of the components of the auto­

claves and primary support equipment. Figure 3 is broken down into 

seven areas as indicated by the dotted lines.

Figure 4 is a detailed diagram of Area III, the hot charge auto­

clave. The autoclave (AU-101) is a one-gallon stainless steel pressure 

vessel rated at 5,100 psi (35,000 kPa) at 510°C. It is also equipped 

with an explosion proof, variable speed, packless, magnetically coupled 

stirrer. The autoclaves are equipped with flush valves at the bottom 

for liquid phase time sampling. When closed, the valves leave no pock­

ets or dead spots on the inside of the autoclave into which reactant 

materials may accumulate or settle. This feature should provide
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reliable liquid sampling data with a minimum of sampling losses since 

fewer purge samples will be required.

In the one-liter time-sampled autoclave at GFETC, a minimum of 

400-gram slurry charge is used to limit change in reactor contents dur­

ing the run and allow reasonable material balances. This leaves so lit­

tle remaining space in the reactor that the reaction is depleted of gas. 

Use of the one-gallon reactor will permit much higher gas-slurry ratio 

with adequate material balances, thus providing a substantially length­

ened time during which the vapor phase reactant is not the limiting 

reactant. Also, the higher gas volume of the one gallon autoclave reduc 

es the effect of vapor phase time sampling on pressure. The size of 

each of the time samples is approximately the same as that for the one- 

liter autoclave, while the reactive vapor volume increases significantly 

The time sampling in the one-gallon autoclave produces a smaller pres­

sure loss, resulting in less change in pressure during the reaction 

time.

Figure 5 is a detailed diagram of Area II, the slurry charge sys­

tem for the hot charge autoclave. Principal components of this system 

are the low pressure slurry pump (PD-351) and the piston accumulator 

used as the slurry charge vessel (PA-102). The low pressure slurry pump 

is a double diaphragm, positive displacement, variable flow, metering 

pump, which charges the slurry into the slurry charge vessel. The slur­

ry charge vessel is a one-gallon stainless steel accumulator equipped 

with a movable 4-inch piston with a 10,000 psi rating (69,000 kPa) at 

room temperature. The seals between the piston and the cylinder walls 

are made of Viton. The low-pressure slurry pump charges slurry to the 

accumulator below the piston. The upper portion of the accumulator
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contains hydraulic oil. When charging the slurry into the autoclave, 

the hydraulic oil may be pumped up to pressures as high as 7,500 psi 

(52,000 kPa). Two valves between the charge vessel and the autoclave 

are used to control the charge amount and rate. This highly flexible 

positive displacement feed system is capable of charging one gallon of 

slurry into the autoclave at high temperature and pressure in two min­

utes. The system is also capable of injecting small increments of slur­

ry or other liquid reactants during the reaction. The entire slurry 

system can be flushed and recharged to allow different materials to be 

added during a run, e.g., a catalyst may be added after a run is started. 

This system has several advantages over the use of a slurry pump for 

direct charging to an autoclave. These include low initial investment 

as compared to a slurry pump capable of metering slurry at pressure of 

7,500 psi (52,000 kPa), improved reproducibility of quantity and com­

position of slurry charged, and positive displacement of the slurry 

which avoids the losses due to adherence to charger walls.

Figure 6 is a detailed diagram of Area IV, the gas compression 

system. The major components of this system are two 1-i gallon piston 

accumulators (PA-201, PA-202) rated at 10,000 psi (69,000 kPa) at room 

temperature. In this system gas is on the upper side of the piston and 

hydraulic oil on the lower side. Gas is supplied from cylinders shown 

in Area VII-B of Figure 3. This system is capable of compressing as 

much as (100 SCF) of gas at tank pressure (up to 2,200 psi)(15,000 kPa) 

to 7,500 psi (52,000 kPa). This system enjoys the same versitility as 

the slurry charge system with the additional advantage of continuous 

feed capability when the two accumulators are used alternately.
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Figure 7 is a detailed diagram of Area I, the high pressure hydrau­

lic oil supply system. The major component of the system is the high- 

pressure, positive-displacement, packed-plunger, metering hydraulic pump 

(PD-301) which is capable of pumping hydraulic oil at 30 gallons/hour 

and 7,500 psi (52,000 kPa). It supplies oil to both the slurry charge 

system and the gas compressor system at a rate which allows both slurry 

and gas to be charged simultaneously. In addition, the hydraulic pump 

and slurry pump are driven by the same system to save space and expense. 

As both pumps have metering capabilities, they may be used simultaneous­

ly or independently in the operation of the gas compressor and slurry 

charge systems. The combination of these systems has greatly reduced 

initial investment, parts inventory, and maintenance expense, while af­

fording a high degree of flexibility and system independence.

The cold charge autoclave, shown in Figure 3 as Area VII-A, is 

supplied by the same gas supply and compression system as the hot charge 

facility.

The second major element of the UND autoclave facility is the in­

strumentation and controls system. Figure 8 is a schematic diagram of 

the instrumentation for both the hot and cold charge autoclave. Because 

of the safety requirements, which will be discussed later, all pressure 

and temperature measurements are remote. Type J thermocouples are used 

for temperature signal generation and pressure transducers with 0-20 mA 

output for pressure signals. Four recorders and four digital displays 

show temperature and pressures. Autoclave temperature and pressure are 

recorded with continuous pen recorders, while other temperature and pres­

sure data are recorded on multipoint dot recorders. All recorders have 

one second full scale response times. The multipoint recorders have a
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skip function enabling any point or points to be eliminated during any 

given run. Digital display of points not requiring recording is on four 

5-place multi-display pressure and temperature indicators.

The quantity of slurry or gas charged is determined by measuring 

the hydraulic fluid displaced during the charge procedure. The hydrau­

lic oil, under constant pressure, is measured by two independent methods, 

one being by observation of a sight glass on the seven-gallon oil reser­

voir and the other by means of a turbine flow meter equipped with a flow 

rate indicator and totalizer. The gas charged may also be measured with 

a gas phase turbine flow meter with a temperature and pressure compensat­

ed flow rate indicator and totalizer.

The temperature programmed gas chromatograph (GC) used for analyz­

ing vapor samples is equipped with two columns with column packing cap­

able of separating h^O, CO, CO^, and light hydrocarbons. The analysis 

of H^O by the gas chromatograph, not usually incorporated into autoclave 

gas sampling systems, required that the sample collection system be held 

at a temperature above the boiling point of H^O at sample pressure. A 

gas sample storage system is provided to improve data collection versa­

tility. Figure 9 is a drawing of the GC sample loops and hot box. The 

sample loops are also shown diagramatically in Figure 3, Area IV. The 

storage system provides for storage of up to 10 samples, which may be 

collected at sampling intervals as short as 20 seconds, for a time long 

enough for all 10 samples to be analyzed.

The GC sample loop storage system, as well as the vapor and liquid 

phase sampling systems, have several simultaneous timed operations, all 

of which can be handled by a programmable controller. The programmable 

controller provides reliable, reproducible timing for sequenced
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operations. It can be programmed to operate on a time table in incre­

ments as small as 0.01 seconds, and thus essentially eliminates vari­

ability for the timed sample events. The controller is also capable 

of controlling the GC operation, the slurry charge system, and the gas 

charge system, thus further standardizing operations.

A significant effort in the facility preparation program is the 

building modification for compliance with federal health and safety guide­

lines. Figure 10' is a floor plan of the portion of the UND building 

housing the project. The areas of major building modifications are cells 

1 through 4, the lunchroom, and locker rooms 1 through 4.

One guideline employed at GFETC is that direct personnel exposure 

to high pressure equipment be limited to a vessel at 100°C or less and 

3,000 psi (21,000 kPa) or l e s s . ^  As the UND autoclave system is to 

be operated in excess of these limitations, special enclosures are 

required. The enclosures are cells 1 through 4 of Figure 10. Figure 11 

is a detailed diagram of the barricade structure. The autoclave barri­

cade system is set up to allow the cleaning and maintenance of one 

autoclave during the operation of the other. Cell 1 contains the hydrau­

lic and slurry pumps; cell 2, the hot charge autoclave; cell 3, the gas 

compression equipment and GC sample loops; and cell 4, the cold charge 

autoclave. Each cell has a blast window which opens during an explosion, 

protecting operators behind the opposing barricade from the consequences 

of dangerous pressure buildups should an explosion occur. Beyond the 

blast windows are blast mats woven of i-inch steel cables. The barri­

cade itself is constructed of i-inch Cor-ten steel plate. The barricade 

and blast mats have been calculated to provide protection against shrap­

nel .
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Federal health and safety guidelines ' also specify conditions 

for extended work in an environment containing coal liquefaction pro­

ducts. Personnel in potential contact with coal liquefaction products 

are to be supplied with clean work clothing at the start of each work 

day and must properly dispose of them at the close of each work day. 

Further requirements include separate change facilities to isolate the 

area for changing work clothing from that for street clothing. These 

guidelines require the presence of two locker rooms if only one sex is 

employed and four if both male and female employees are present. Locker 

rooms 1 through 4 of Figure 8 are the change facilities planned for the 

UND autoclave installation.

There are also guidelines for break and lunch times during the 

work day. A break room isolate from the bulk of the work area, equipped 

with wash facilities, is required to provide a safe area in which food 

may be consumed. The lunchroom, shown in Figure 10, meets these require­

ments.

Ventilation requirements are also quite rigorous. Twenty changes 

of air per hour are suggested in the barricaded area with 10 changes per 

hour in the work and locker room areas.

The UND autoclave facility has enough flexibility to be useful for 

many different research programs and is expected to supply extensive 

data from studies on the liquefaction of low-rank western coals.

(31
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PIPE SCHEDULE

® */l»- 0.0. 29.000 p«. S.S .

® ,/•- 0.0. 20.000 p..

1/4" 0.0. PlMtir !• • < • « "  Tj»IM

® i VI*" 0.0. 40.000 Ml l*.S. ■

® ] 1/4" 0.0. *0.00"

® V." 0.0. 90.000 r..

® 1/0- O.D. 11.000 Ml •-

1 0.0 u.xo r«‘ •

-e*oo

Figure 4 Detailed Diagram of Area III, the UND Hot-Charge Autoclave Components
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PIPE SCHEDULE

® VI*' 0. D. 20.000 pa. I..S.I

./r- 0.0. 20.000 pal IS.S.)

W l/A- O.D. Plaatlc lu irw el Tubinp

® V I*' 0.0. AO.000 pal IS.S.I

i/4- 0.0. AO.000 pal IS.S.I

® VO- 0.0. AO.000 pai

® I/O- O.D. 11.000 pal «.*.

® »/4- 0.0. 11.000,,,

FITTING SCHEDULE

Figure 5. Detailed Diagram of Area II, the Slurry Charge System Components.
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Figure 6. Detailed Diagram of Area IV, the Gas Compression System Components.
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PIPE SCHEDULE

,/,*■ o.D. 20.000 pa, (S.S.I

• 1/0“ O.D. 20.000 pal (S.S.I

© FlAatic laatnaant Tufeiia

® 60.000 pal IS.S.I

© 1/4“ 0.0. 60.000 pal IF.S.I

® •/•“ 0.0. 60.000 pa. is.s.i

® 11.000 pa. -S.S.I

- 11.000 pai

FITTING SCHEDULE
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CHEMICAL ENGINEERING 
CO AL LIOUIFACTION PROJECT

UNIVERSITY OF NORTH DAKOTA - GRANO FORKS

AREA I

PATE I 11-7-79
OWN. BY« J. 0ETCMER
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Figure 7. Detailed Diagram of Area I, the High-Pressure Hydraulic Oil Supply System Components.
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INSTRUMENTATION SCHEDULE
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Figure 8 Schematic of the Instrumentation for the Hot-Charge System
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Figure 11. Deatiled Diagram of Barricade Structure
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DETERMINATION OF HYDROGEN SULFIDE IN SRC PRODUCT GAS (24)

Date: This method covers the determination of hydrogen sulfide in pro­
duct gas from SRC lab unit. It is applicable on a concentration range 
of about 0.1 to 7 %  V/V H^S. A measured volume of product gas is bubbled 
through ammoniacal zinc sulfate solution to remove hydrogen sulfide.
The amount of hydrogen sulfide in the absorber is then determined iodo- 
mectrically.

Special Apparatus:

(a) A 250 ml Erlenmeyer flask with a two-hole rubber stopper carrying 
(1) a 7-mm diameter glass tube, with a drawn down tip, extending nearly 
to the bottom of the flask and a (2) short 7-mm diameter glass tube, 
extending just a little ways on either end of stopper, for exit of 
excess unabsorbed gas. On the inlet end of the (1) inlet-tube, a 1-ft 
long rubber injection tube is attached. On the outer end of the (2) 
exit tube, a small rubber bulb having a small slit cut in it can be used 
as a 'flap' valve to restrict the rapid flow of gas and to exclude the 
entrance of air.

(b) Gas Syringes, 500 or 1000 ml - Hamilton Super Syringes No. S-0500 
or S-1000.

Reagent Solutions:

(a) Ammoniacal Zinc Sulfate. - Dissolve 50 grams of zinc sulfate hepta- 
hydrate in 250 ml of water, and then slowly add 250 ml of concentrated 
ammonium hydroxide while stirring. Filter off any precipitate that may 
form upon long standing.

(d) Hydrochloric Acid 1:1. Dilute concentrated HC1 with an equal vol­
ume of water.

(c) Iodine Solution (0.05N). - Weigh 12.8 gms of resublimed iodine
crystals into a 250 ml beaker. Add 40 gms of potassium iodide (KI) and 
100 ml of water. Stir until solution is complete, dilute to 2000 ml, 
mix thoroughly, and store in a brown-glass reagent bottle. (No need
to know iodine solution normality exactly if it does not change and the 
same exact amount volume (25.0 ml) is used in reagent blank and sample 
determinations.)

(d) Sodium Thiosulfate Standard Solution (0.05N). - Dissolve 25 gms
of sodium thiosulfate (Na2S2 0 3 • 5H2 0 ) in 500 ml water and add 0.01 gm 
sodium carbonate ^ 2 0 6 3 ) to stabilize the solution. Dilute to 2000 ml 
and mix thoroughly. Standardize verus potassium dichromate or potassium 
iodate by usual techniques to accuracy of ± 2 ppt.
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(e) Starch Solution, 2%. To 250 ml of boiling water, add a cold sus­
pension of 5 gms of soluble starch and 0.025 gms mercuric iodide. Boil 
for a few minutes to clear. Store in glass-stoppered bottle with un­
dissolved mercuric iodide on bottom.

Samp!ing

The product gas must be analyzed for H„S as soon as possible after re­
ceipt. Hydrogen sulfide can react with any condensed water vapor or 
ammonia and can come out of the gas mixture. It may also dissolve in 
the sides of the bag and be lost. The effect of it possibly combining 
with carbon monoxide to form carbonyl sulfide (COS) is not known. It 
would be preferred if the gas could be sampled at the source.

Procedure:

Transfer 30 ml, by graduate, of the ammoniacal zinc sulfate solution 
to a 250 ml Erlenmeyer flask. Dilute with water to about 150 ml and 
add a 1 \ -inch stirring bar. Put in inlet tube-valved stopper. Attach 
filled gas syringe to injection tube by means of a short piece of glass 
or stainless steel tubing. While magnetically stirring, slowly inject 
100 ml to 1000 ml of product gas depending on H^S percentage. (Watch 
for heavy turbidity formation as guide to the volume of gas to use in 
first test.) (Caution: This part of the test should be done in area 
free of open flames or sparks. Also if gas contains much carbon monox­
ide, it should be done in good fume hood!)

Remove syringe from injection tube and record volume of gas injected 
into flask. Raise rubber stopper just enough to bring end of inlet tube 
out of solution and wash down the injection tube with about 1 ml of 1:1 
HC1 and a little water from a wash bottle. Transfer the stirring bar, 
by means of a thief, from the 250 ml E flask to a 500 ml Erlenmeyer 
flask containing 25.0 ml of 0.05N iodine solution (by pipet) and 40 ml 
1:1 HCl solution (by graduate). While stirring continuously, very slow­
ly pour the contents of the absorbing 250 ml flask into the 500 ml E 
flask. Rinse the 250 ml flask with about 100 ml water into the 500 ml 
flask.

As quickly as possible, titrate the solution, while being stirred, with 
standardized 0.05N sodium thiosulfate solution until the solution is 
yellow. Then add 2 ml of 2°l starch solution and continue titration to 
a permanent colorless end point. Record volume of sodium thiosulfate 
required for titration. (Sample solutions are usually turbid at end 
of titration, blanks are clear.)

Run through above procedure, leaving out gas sample, for reagent blank. 
The nature of this test is that the blanks are equal to or usually high­
er than the titration volumes obtained for samples.

The blank and sample tests should be run in duplicate. The blank values 
do not change very much, therefore only a weekly check is necessary if 
there.have not been any changes in reagents, room temperature, etc. If 
sample titration volume is less than half of the reagent blank, test 
should be rerun using less gas sample.
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Calculations

(Vb- V ) x Nt x F x 100 

V gas
= l I^S (mole % )

where:
V^ = Volume (mis) of sodium thiosulfate used in blank 

Vs = Volume (mis) of sodium thiosulfate used in sample.

= Normality of sodium thiosulfate

Vgas = Volume (mis) of product gas used in test.

F = Factor in milliliters of hydrogen sulfide per mil 1iequivalent 
of sodium thiosulfate. It is one half of the reciprocal of 
the molar equivalent of one liter of gas (moles/1iter) at tem­
perature and pressure of product gas at time of testing. See 
"Molar equivalent of one liter of gas at various temperatures 
and pressures" Table for ease of calculations. An average 
value of 12.5 can be used in the Kansas City Area.

Revised: July 1971 - REP 

Reference Source: ASTM D2385
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AMMONIA IN GAS DETERMINATION (25)

1. Turn on Spectronic "20," set at 425 nm, and allow to warm up for 
thirty minutes.

2. Prepare six ammonia-in-water standards of 1, 2, 3, 5, 8, and 10 ppm 
ammonia concentration in 500 ml volumetric flasks. (Use 200, 500, 
and 1000 ppm ammonia stock solution standards for preparation of
the 1 to 10 ppm ammonia samples. Note: Before diluting to the mark, 
add one drop of cone. HC1 to each 500 ml volumetric flask.

3. Transfer a portion of each of the six ammonia standards prepared
in step 2 to 50 ml volumetric flasks, filling to the mark, and then 
adding 1 ml of Nessler's Reagent. **Start timer, agitate volumetric 
flask for several minutes and then allow color development to take 
place for twenty minutes. Prepare blank in identical manner using 
acidified demineralized water.

4. Read optical density (o.d.) of ammonia standards at 425 nm on Spec­
tronic "20," using the blank for the 100% transmission adjustment. 
Note: Be sure to use the same curvette for all readings, rinsing it 
thoroughly with the next sample to be analyzed before proceeding.

5. Obtain computer tape marked "Least Square Slope Calc.-General," No.
1, and determine the slope value for the x-y plot of concentration 
vs. optical density.

6. Prepare gas samples for analysis by bubbling 500 cc of the product 
gas through 150 ml of filtered distilled water. Next add one drop 
of concentrated HC1 and 1 ml of Nessler's Reagent. Stopper flask, 
set timer, agitate flask for several minutes and allow color devel­
opment for twenty minutes. Prepare blank in identical manner.

7. After twenty minutes, adjust the 100% transmission setting with the 
blank, and then read the optical density of the samples. If an 
optical density reading is higher than 0.7, repeat the analysis on 
the sample using a higher d i l u t i o n . N o t e :  Be sure to use the 
same curvette for all readings, rinsing it thoroughly with the next 
sample to be analyzed before proceeding.

8 . Compute ppm NH~ in water sample by multiplying the optical density 
by the slope value obtained in step 5. X dilution factor. From 
ppm NHo in water sample, calculate mol ppm NH^ in 500 cc gas sample 
(See worksheet).

9. Record all data in appropriate lab databook and on NH-. in gas work­
sheet.

** Adding Nessler's reagent to the flask after diluting to the mark is 
done to minimize air contact with the sample.

(1) Conversely, if optical density reading is less than 0.1, repeat 
analysis using a lower dilution.
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DETERMINATION OF SPECIFIC GRAVITY (26)

1. Evacuate the glass flask by attaching it to the vacuum pump with 
the attached rubber hose. Open the flask and turn on the vacuum 
pump to evacuate the bulb. Evacuate until a constant reading is 
obtained on the manometer. Close the flask and shut off the vacuum 
pump. Open the flask to the air and then weigh. Record the weight 
obtained as the weight of AIR.

2. Again evacuate the glass flask until a steady reading is obtained 
on the manometer. Close the flask and shut off vacuum pump. Weigh 
and record the weight of the evacuated flask. Record this as the 
VACUUM weight.

3. Attach the previously weighed evacuated flask back on to the vacuum 
apparatus without opening the flask. Connect the gas sample bag
to the gas hose provided on the apparatus, making sure all valves 
are closed. With the flask and bag closed, open the valve mounted 
on the wall leading to the bag and allow the vacuum to stabilize. 
Close the wall mounted valve tightly. Open the gas valve on the 
bag and allow the gas to enter the rubber hose. Maintain a constant 
vigil on the manometer to insure a constant reading. Slowly close 
the vacuum valve mounted on the vacuum pump; maintaining a constant 
manometer reading. Close until the manometer starts to drop, reopen 
valve to a steady position. At this time, quickly open the wall 
mounted valve while, simultaneously, closing the valve on the vacuum 
pump. Now open the ground glass fitting to allow the gas to enter 
the glass bulb. After thirty seconds close the valves on the bulb 
and on the gas bag and then disconnect the bulb and weigh and record 
the weight as that of the gas sample.

4. Repeat the procedure for each sample until reproducible results are 
achieved. This procedure is to be followed for each sample gas bag 
for each run. The results are to be recorded for each bag.

5. CALCULATIONS

a. Subtract the weight of the VACUUM from that of the AIR 
sample weight.

b. Subtract the weight of the VACUUM from the weight of the 
GAS.

c. Divide the results from â into the results from ]).
d. Repeat for each sample and average the results for each bag.

6. NOTES

Lintless gloves should be worn at all times to avoid weight gain of 
the bulb.
The specific gravity for two different bags of a sample will not 
necessarily be the same, but, the specific gravity of two samples 
of the same bag should be within ± .0100 of the average specific 
gravity.
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SAMPLE YIELD CALCULATIONS FOR RUN Ml
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SAMPLE CALCULATIONS FOR RUN Ml

The mass of the gas into the autoclave was determined by calibrat­

ing the accumulator into which the reaction gas was compressed. The 

accumulator was calibrated to use any mixture of CO and H2 from pure 

CO to pure H^. The accumulator was also calibrated to allow H2S to be 

added to the mixture.

First the pressure of the reaction gas was converted from gauge 

to absolute pressure for run 1.

P(l) = H2-C0 pressure = gauge pressure + atmospheric pressure 

P(l) = P(l) + (P(3) * 0.49131) (160)2

P(l) = 380 psig + (29.57 in Hg)(.49131 ^ g)

P(l) = 394.528 psig

The moles of gas in was then determined from the equation

C(l) = ((273 + T(l)/293)(Yl/100 * (P(l) * Ml + Rl) +

((1 - Yl/100) P(l) * M2 + R2))) (170)

where T(l) = H2-C0 temperature in accumulator, °C 

Y1 = % H2 in feed gas 

P(l) = H2~C0 pressure in accumulator, psig 

Ml and M2 = Slopes for the H2 and CO calibration lines, 

respectively

Rl and R2 = Y-intercepts of the H2 and CO calibration lines, 

respectively

for Run 1 T(l) = 19°C, Y1 = 0

Cl = (273 + 19/293)((0/100) * (394.5280 psig * 2.3776 x 10“2 +

O
Numbers in parentheses in this Appendix refer to the line number 

in the computer program which performs this calculation.
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-1.37239 x 10_1) + ((1-0/100 * (394.5280 psig *

2.4935 x 10“2 + -3.0819 x 10~2)))

= 9.773

P(2) = h^S pressure = gauge pressure + atmospheric pressure 

P(2) = P(2) + P(3) * 0.49131) (160)

= 0 psig + (29.57 in Hg)(0.49131 J ^ )

= 14.528 psig 

and from the equation

C(2) = ((273 + T(2)/293) * Yl/100 * (P(2) * Ml + Rl))) (170)

+ ((l-Y/100) * (P(2) * M2 + R2))) 

where T(2) = H^S temperature in accumulator °C 

assume 0 if no present 

Y1 = % in feed gas 

P(2) = HgS pressure in accumulator, psig 

Ml and M2 = slopes for the and CO

calibration lines, respectively.

Rl and R2 = Y intercepts of the H2 and CO

calibration lines, respectively.

for Run 1

since no h^S is present T(2) = 0 

C(2) = (273 + 0°C/293) * (0/100 * (14.5280 psig * 2.3776 x 10”2 

+ -1.37239 x 10"1) + ((1-0/100)* (14.5280 psig 

2.4935 x 10'2 + -3.0819 x 10"2)))

C(2) = .309

C(3) = C(l) - C(2) = 9.773 - .309 = 9.464 (190)

Then N = C(3) + C(4) (220)
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where C(4) = moles of H^S in the gas and is found 

by the equation

C(4) = ((273 + T(l)/294) * (P(2) * M3 + R5)) (210)

where T1 = H^-CO temperature in accumulator °C

P(2) = H^S pressures in accumulator psig 

M(3) = slope of H2S calibration line 

R(5) = Y intercept of calibration line 

In this case when T(2) = 0 

C(4) = 0

Therefore N1 = C(3) = 9.464 moles of gas into the autoclave

since all runs were made using pure CO

the mass of the gas in was

9.464 q moles CO---28JL01---- = 265.099 CO in
g mole CO

Grams slurry into the autoclave = 728.1 grams 

The slurry consists of H^O, MAF lignite, and solvent in a 

100 : 200 : 400 ratio and the ash present in the lignite. 

Therefore the actual amounts of ^ 0  and MAF lignite, HAO-61 

and ash into the autoclave were determined as follows:

HAO-61 + MAF lignite H^O + Ash = Mass slurry into autoclave 

= 4x + 2x + lx + ( ^  H?0 lignite -V/\sh lignite) * ^  affj

7x + ( 2x
l-% H20 lignite - % Ash lignite

gnite)

) * (% Ash 1 ignite)(290)

for Run 1

r 2X
7x +((i_29.88/100 - 7.98/100)^ * (7-98/100) 728’1 9m

7x + .25684 x = 728.1 gm
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7.25684 x = 728.1 gm

x = 100.333 gm

Therefore the masses of following are 

H20 = 100.333 gm

MAF lignite = (2) 100.333 gm = 200.666 

HAO-61 = (4) 100.333 gm = 401.332 

and the mass of the ash is

Ash ■ <(Mt H?0 lignite - t  Ash lignite)’ * flsh ,i9n1te)

= ( 2 09 ^ 6 659 ----------------------------------.  .  9 8 /1 0 0 1
'1-29.88/100 - 7.98/100' U 'yo/iUU; (337)

= 25.769

Total mass in = H^O + MAF lignite + HAO-61 + Ash + Gas (340) 

= 100.3329 + 200.6659 + 401.3317 + 25.7695 + 265.0995 

= 993.199 gm

The moles of product gas were determined from the volume measure­

ment on the dry gas meter assuming that the ideal gas law is 

obeyed. From the ideal gas law

PV = nRT or n = ^  (270)

for Run 1

n = (29.57 in Hg)(10.169 ft3)

’ <-0481°V m o l 8  OR » 520°R)

n = 12.0206g moles gas out

knowing the product gas composition the mass of the gas out 

can be determined as follows
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Component
co2

Total moles 
(12.0206 moles)

mole % 
(35.54/100)

MW
(44.01) = 188.0164

C2H6
II (0.47/100) (30.07) = 1.6989

C3H8
II (0.14/100) (44.09) = 0.7420

H2
II (14.64/100) (2.016) = 3.5478

ch4 II (1.15/100) (16.04) = 2.2173

CO II (47.99/100) (28.01) = 161.5812

H2S II (0.05/100) (34.08) = 0.2048

NH3
II (0.01/100) (17.08) = 0.0205

Total

Mass of the gas out = 358.028 gm 

Mass of the Ash out

Ash = (% of Ash of endpot)(Mass endpot)

= (4.52%/100)(544.7g) = 24.620 gm Ash 

IOM = (1 - % THF soluble) (Mass endpot) -

Out

Ash out

358.028

(280)

(335)

(330)

= (1-92.84/100)(544.7g) - 24.6204 g 

= 14.380 g IOM out

SRL = (% THF soluble - % cyclohexane soluble)(Mass endpot) (320)

= ((92.84 - 79.62)/100) * (544.7g)

= 72.009 g SRL out

H^O out = (% H^O in endpot)(Mass endpot)+(% h^O in condensate)

(Mass Condensate) (300)

H20 out = (0.147%)(544.7 gm) + (98.2456/100)(42.2 gm)

= 42.258 gm H20 out

Oil out = (% cyclohexane soluble)(Mass endpot) - (% H^O in endpot) 

(Mass endpot) + (1 - % H20 in condensate)

(Mass condensate) (310)
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Oil out = (79.62 %/100)(544.7 gm) - (0.147 %/100 (544.7 gm)

+ (1-98.24/100)(42.2 gm) = 433.632 gm oil out

Total mass out = Gas + Ash + IOM + SRL + H^O + Oil (350)

= 358.028 + 24.620 + 14.380 + 72.009 + 42.258 + 433.632

= 944.928 gm out

Net yields/wt % MAF lignite 

M  nll+ H90 .
H2° - <M F  ignite in ) 100 (410)

= (42,2200~6g6'°'~̂ 3'~) 100 = -28*941%

n-n /Oil out - solvent HAO-61 1An 
U11 ' 1 MAF lignite in ’ w u

(370)

,433.632 - 401.332\ m n  _ ic nnco/ 

(---2007666------- } 100 ‘ 16-096/o

SRL = (SRL out________ ) 1Q0
'MAF lignite in '

(100) - 35.885*

(380)

IOM

Ash

/JOMjout------- \ qq (Ann)
'MAF lignite in' iUU ^ uu'

(li^80_) ioO 
'200.666' iUU 7.166%

,Ash out - Ash in  ̂
'MAF lignite in '

100 (415)

,24.620 - 25.769n 
1 2 0 0 . 6 6 6  '  iUU

Gas out - Gas in

-0.5726%

( MAF lignite in ) 100

,358.029 - 265.099x inn _ on 
(----- 200:666-----} 100 ‘ 46-311

Ga s - (390)
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Total = H20 + Oil + SRL + IOM + Ash + Gas

= -28.941 + 16.096 + 35.885 + 7.166 + -0.573 + 46.311 

= 75.945

% closure = /mass outx 
^mass in 100

/944.928\ 100 = 95.140
l993.199;

% conversion = 100 - IOM

= 100 - 7.166 = 92.834

Normalized Output

Assuming difference in output is divided proportionally 

between the gas out, endpot, and cold trap condensate

__ _ x _ /unnormalized mass gas outxMass gas out = (------ %  c1osure »------ ) 100

,358.0290^ 
1 90.140 1

100

= 376.318 gm gas out

„ x x /Unnormalized mass endpot innMass endpot out > (------- %  c1osuri-----^ ) 100

= ( | P t 3 q ) 100 * 572.525 gm endpot out

„ ______________,_______x_ _..x _ ,unnormalized mass condensateN 100Mass condensate out - (-------- %  t f ^ u r e ----------- )

= (gg’i4Qm) ^  = 44.356 gm condensate out

Normalized mass out = mass gas out + mass endpot out

(455)

(360)

(420)

(960)

(940)

(950)

+ mass condensate out
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= 376.318 + 572.525 + 44.356 

= 993.199 gm out

Ash out = (% Ash in endpot)(Mass endpot) (335)

(4.52%/100) (572.525 gm)

= 25.878 gm Ash out

IOM = (1- % THF soluble/100)(Mass endpot) - Ash out (330) 

(1- 92.84/100)(572.525 gm) -25.878 

= 40.993 - 25.878

= 15.115 gm IOM out

SRL = (% THF soluble - % cyclohexane soluble)(Mass endpot)(320) 

= (92.84 - 79.62)/100 (572.525)

= 75.688 gm SRL out

H^O out = (%H20 in endpot)(Mass endpot)+(%H20 in condensate)

(Mass condensate) (300)

= (0.147%/100)(572.525) + (98.24%/100)(44.356)

= 44.417 gm H20 out

Oil out = (% cyclohexane soluble)(Mass endpot) + (l-% H20 in

condensate)(Mass condensate) - (% H^O in endpot) (310) 

(Mass endpot)

= (79.62%/100)(572.525 gm) + (1-98.24%/100)(44.356 gm)

- (0.147%/100)(572.525 gm) = 455.783 gm 

Gas out = 376.318 gm gas out

Total mass out = Ash + IOM + SRL + H^O + Oil + Gas (350)

= 25.878 + 15.115 + 75.688 + 44.417 + 455.783 + 376.318

= 993.199 gm
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h2o

Normalized Net Yields/Wt % MAF Lignite

Ho0 out - Ho0 in
f ^ ^ _______ \
'Mass MAF lignite in'

100

/44.417 - 100.333\ 100
1 200.666 1 -27.865

n -n _ /Oil out - HAO-61 Solvent in  ̂ 100 
1 ' MAF lignite in '

,455.783 - 401.332x 100 
1 200 .666 1 27.135

cm - / SRL out  ̂ 100 
'MAF lignite in'

,75.688 x 100 
1200.666; 37.718

IOM IOM out
MAF lignite in

,15.115 s 100 
1200.666'

= 7.532

Ach = /Ash out - Ash in  ̂ 100 _
'MAF 1 ignite in

,25.878 - 25.769^ 100 _ nc/I 
<----2 0 O 6 6 ----> “ -054

r ,Gas out - Gas in  ̂ 100 
'MAF lignite in '

,376.318 - 265.099> 100 
1 200 .666 '

= 55.425

Total = H20 + Oil + SRL + IOM + Ash + Gas

= -27.865 + 27.135 + 37.718 + 7.532 + .054 + 55.425

(410)

(370)

(380)

(400)

(415)

(390)

(455)

= 100.000
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%  closure /Mass outx 100 
'Mass in '

% conversion
(H o i l ) 100 = 100% cl0SUre

100%-IOM = 100-7.532

= 92.468

(360)

(420)
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APPENDIX 4

SYMBOLS AND COMPUTER PROGRAM USED TO 

PERFORM NET YIELD CALCULATIONS
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Symbols Used in Computer Programs

DO Date of Run 

P£ Run #

P(3) Barometric pressure, in Hg 

P(l) H2-C0 pressure in accumulator, psi 

P(2) ^ S  pressure in accumulator, psi 

Y1 % H2 in feed gas

T(l) H2-C0 temperature in accumulator, °C 

T(2) H2S temperature in accumulator, °C 

M(4) Mass slurry into autoclave sm 

M5 Mass condensate in cold traps sm
3

VI Volume product gas out through dry gas meter, ft 

M6 Mass endpot out, gm 

@1 l Ash in endpot

02 % H^O in endpot

51 % cyclohexane soluble of endpot

52 l THF soluble of endpot

@3 % H^O in condensate

G1 Mole % CO^ in product gas

G2 mole % C2H6 in product gas

G3 mole % C3H8 in product gas

G4 mole % H2 in product gas

G5 mole % CH4 in product gas

G6 mole % CO in product gas

G7 mole % H2S in product gas

G8 mole % NH3 in product gas

N1 moles of reactant gas, gmoles 

M7 mass of reactant gas, gm 

H2 mole %  of H2S in reactant gas 

H3 mole % of H2 in reactant gas

Cl mole % of CO in reactant gas

N2 moles of product gas, gmoles 

MS Mass of product gas, gm

XI Mass H^O in, gm
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X2 Mass H^O out, gm

@4 % ash in 1 ignite

D1 Mass oil out, gm

S3 Mass SRL out, gm

11 Mass IOM out, gm

12 Mass in, gm

0 Mass out, gm

C6 % closure

C(AG) Calibration coefficient

D New 7o oil/MAF 1 ignite

S Net % SRL/MAF 1 ignite

G Net % gas/MAF 1 ignite

I Net % IOM/MAF 1 ignite

H Net % H^O/MAF lignite

H6 Mass HAO-61 in, gm

LI Mass MAF lignite in, gm

A1 Mass Ash in, gm

@5 %  H20 in lignite

A2 Mass Ash in endpot, gm

A Net % Ash/MAF 1 ignite

C7 % conversion
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380 S = S 3 / ( 2 * X 1 ) * 1 0 0
390 G= < ( H 8 - H 7 ) / < 2 * X 1  ) )=*100
400 1= ( 1 1 / ( 2*X1 ) ) * 1 0 0
410 H*  ( ( X2 - X1  ) / ( 2 :»X1 ) ) :* 100
415 A= < ( A2 - A1 ) / ( 2 * X 1 ) ) * 1 0 0
420 C7= 1 0 0 - 1
455 T= D+S+G+I +H+A
460
470

IF Z = 
PRINT

1 THEN 675

480
490
495

PRINT
PRINT

"RUN NUMBER"

500 PRINT "INPUT"
510
520

PRINT
PRINT

II  II

530 PRINT "COMPONENT
540 PRINT II
550 PRINT "HAF LIGNITE'
560 PRINT USING 495,LI
570 PRINT "H20",
580 PRINT USING 495,XI
590 PRINT "ASH",
600 PRINT USING 495,A1
610 PRINT "HAO-61",
620 PRINT USING 495,H6
630 PRINT "GAS",
640 PRINT USING 495,M7
650 PRINT " TOTAL",
660 PRINT USING 495,12
670 PRINT "__________

673 IF Z =0 THEN 680
675 PRINT "NORMALIZED"
680 PRINT "OUTPUT"
690 PRINT II l

700 PRINT II

710 PRINT "COMPONENT
720 PRINT II

730 : Miff .«««
740 PRINT " H 2 0 " ,
750 PRINT USING 730,X2
760 PRINT "OIL",
770 PRINT USING 730,D1
773 PRINT "SRL",
777 PRINT USING 730,S3
780 PRINT "ION",
790 PRINT USING 730,11
800 PRINT "ASH",
810 PRINT USING 730,A2
820 PRINT "GAS",
830 PRINT USING 730,M8

"DATE", DO

GRAMS IN"

NET YIELDS" 
UTZ HAF LIG"

GRAMS
OUT

NM.«M
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840 PRINT " TOTAL",
850 PRINT USING 730,0,T
860 PRINT
870 •• MNI.MN
880 PRINT BZ CLOSURE",
890 PRINT USING 870,C6
900 PRINT "Z CONVERSION1
910 PRINT USING 870,C7
920

M

PRINT II

930 IF Z =1 THEN 1000
940 N6= H6*100/C6
950 H5= H5*100/C6
960 N8= h 8 * 100/C6
970 Z=1
980 GOTO 300
1000 STOP
1010 END
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APPENDIX 5

DATA SHEETS AND COMPUTER PRINTOUTS FOR EACH RUN
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Data Sheet 

Run 1

Run #, Date of Run, Atm Press, H2-C0 Press, H2S Press, % H2 in feed gas 

Ml , 22382 , 29.57 , 380 , 0 , 0

H2-C0 Temp, H2S Temp, Mass Slurry In, Mass condensate out

19 , 0 728.1 42.2

Vol Gas out, Mass Endpot, % Ash in Endpot, % H^O in lignite

10.169 , 544.7 , 4.52 J 29.88

% in Endpot, % cychex soluble, % THF soluble

0.147 79.62 92.84

7o H^O in condensate, % Ash in 1 ignite

98.24 7.98

Product Gas Composition: C02, C2H6, C3H8, H2, CH4, CO, H2S, NH3

35.54, 0.47, 0 .14, 14.64, 1. 15, 47.99, 0.05, 0.01
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Run 2

Run #, Date of Run, Atm Press, H2-C0 Press, H2S Press, % H2 in feed

M2 , 30382 , 29.36 , 380

or»o
H2-C0 Temp, H2S Temp, Mass Slurry In, Mass condensate out

20 » 0 733.5 93.0

Vol Gas out, Mass Endpot, % Ash in Endpot, % H^O in 1 ignite

10.195 , 568.7 , 4.58 30.74

°l H^O in Endpot, % cychex soluble, % THF soluble

0.2065 76.79 92.36

% H^O in condensate, % Ash in 1 ignite

88.61 7.88

Product Gas Composition: C02, C2H6, C3H8, H2, CH4, CO, H2S, NH3

43.82, 0.27, 0.08, 9.97, 0.64, 45.14, 0.09, 0.01
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Run 3

Run #, Date of Run, Atm Press, H2-C0 Press, H2S Press, % H2 in feed gas 

M3 , 31082 , 28.78 in Hg, 380 psi , 0 0

H2-C0 Temp, H2S Temp, Mass Slurry In, Mass condensate out

22°C 0 730.0 gm , 6.2 gm

Vol Gas out, Mass Endpot, % Ash in Endpot, % H^O in lignite

9.874 ft , 663.1 gm , 3.76 5 30.29

% H^O in Endpot, % cychex soluble, % THF soluble

10.42% 9 76.37 90.31

% H20 in condensate, % Ash in 1 ignite

100 9 7.93

Product Gas Composition: C02, C2H6, C3H8, H 2 , CH4, CO, H2S, NH3

23.53, 0.130, 0.035, 8.935, 0.575, 66 .78 , 0.01, 0.005
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Run 4

Run #, Date of Run, Atm Press, H2-C0 Press, H2S Press, % H2 in feed gas 

M4 , 31682 , 28.93, 380 , 0 0

H2-C0 Temp, H2S Temp, Mass Slurry In, Mass condensate out

0\

CMCM 0 , 721.0 5.2

Vol Gas out, Mass Endpot, % Ash in Endpot, % H^O in lignite

9.396 , 662.0 , 3.84 29.92

20 in Endpot, % cychex soluble, % THF soluble

11.71 9 77.48 91.20

20 in condensate, % Ash in 1 ignite

50.08 , 7.97

Product Gas Composition: C02, C2H6, C3H8, H2, CH4, CO, H2S, NH3

23.335, 0.08, 0.04, 6.37, 0.525, 69.455, 0.185, 0.015
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Run 5

Run #, Date of Run, Atm Press, H2-C0 Press, H2S Press, °l H2 in feed gas 

M5 , 32382 , 238.63, 380 , 0 0

H2-C0 Temp, H2S Temp, Mass Slurry In, Mass condensate out

22 723.2 3.2

Vol Gas out, Mass Endpot, % Ash in Endpot, % H^O in lignite

10.313 631.5

% H^O in Endpot,

9.05

% H^O in condensate, 

50.08

29.91

% THF soluble 

93.06

, 4.06

% cychex soluble,

80.29

% Ash in 1 ignite 

7.97

Product Gas Composition: C02, C2H6, C3H8, H2, CH4, CO, H2S, NH3

26.91, 0.36, 0.095, 8.235, 1.11, 63.15, 0.12, 0.01
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Run 6

Run #, Date of Run, Atm Press, H2-C0 Press, H2S Press, % H2 in feed gas

M6 , 33182 , 28 .91 , 380

o•*

o
H2-C0 Temp, H2S Temp, Mass Slurry In, Mass condensate out

21 , 0 725.0 2.2

Vol Gas out, Mass Endpot, % Ash in Endpot, % H^O in 1 ignite

10.060 , 628.3 , 4.03 29.45

% H^O in Endpot, % cychex soluble, % THF soluble

8.339 80.76 93.21

% H^O in condensate, % Ash in lignite

77.94 8.03

Product Gas Composition: C02, C2H6, C3H8, H2, CH4, CO, H2S, NH3

30.52, 0.37, 0.155, 15.320, 1.345, 52.125, 0.16, 0.01
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Run 7

Run #, Date of Run, Atm Press, H2-C0 Press, H2S Press, % H2 in feed gas 

M7 , 60482 , 29.08, 380 , 0 0

H2-C0 Temp, H2S Temp, Mass Slurry In, Mass condensate out

22 , 0 727.28 , 75.25

Vol Gas out, Mass Endpot, % Ash in Endpot, % H^O in lignite

10.6975 , 543.09 , 4.84 28.71

W f l  in Endpot, % cychex soluble, % THF soluble

0.128 76.24 92.00

H^O in condensate, % Ash in lignite

56.62 8.11

Product Gas Composition: C02, C2H6, C3H8, H2, CH4, CO, H2S, NH3

31.465, 0.295, 0.140, 13.130, 0.960, 53.890, 0.100, 0.040
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RUN NUMBER Ml DATE 22382

INPUT

C0NP0NENT GRANS IN

MAF LIGNITE 200.666
H20 100.333
ASH 25.769
HAO-61 401.332
GAS 265.099

TOTAL 993.198

OUTPUT

GRANS NET YIELDS
COMPONENT OUT UTZ MAF LIG

H20 42.258 -28.941
OIL 433.632 16.096
SRL 72.009 35.885
ION 14.380 7.166
ASH 24.620 -0.573
GAS 358.028 46.311

TOTAL 944.927 75.945

Z CLOSURE 95.140
Z CONVERSION 92.834

NORMALIZED
OUTPUT

6RANS NET YIELDS
COMPONENT OUT UTZ MAF LI6

H20 44.417 -27.865
OIL 455.783 27.135
SRL 75.688 37.718
ION 15.115 7.532
ASH 25.878 0.054
GAS 376.318 55.425

TOTAL 993.198 100.000

Z CLOSURE 100.000
Z CONVERSION 92.468

TINE 0.2 SECS
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RUN NUMBER M2 DATE 30382

INPUT

COMPONENT GRAMS IN

MAP LIGNITE 202.156
H20 101.078
ASH 25.953
HAO-61 404.312
GAS 266.032

TOTAL 999.531

OUTPUT

GRAMS NET YIELDS
COMPONENT OUT UT* MAF LIG

H20 83.582 -8.655
OIL 446.123 20.682
SRL 88.547 43.801
IOM 17.402 8.608
ASH 26.046 0.046
GAS 387.465 60.069

TOTAL 1049.164 124.552

X CLOSURE 104.966
X CONVERSION 91.392

NORMALIZED
OUTPUT

GRAMS NET YIELDS
COMPONENT OUT UTX MAF LIG

H20 79.628 -10.611
OIL 425.018 10.242
SRL 84.358 41.729
IOM 16.579 8.201
ASH 24.814 -0.563
GAS 369.135 51.002

TOTAL 999.531 100.000

X CLOSURE 100.000
X CONVERSION 91.799

TIME 0.2 SECS
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RUN NUMBER 

INPUT

M3 DATE 31082

COMPONENT GRAMS IN

MAF LIGNITE 201.193
H20 100.596
ASH 25.825
HAO-61 402.386
GAS 267.891

TOTAL 997.891

OUTPUT

GRAMS NET YIELDS
COMPONENT OUT UTZ MAF LIG

H20 75.295 -12.576
OIL 437.314 17.361
SRL 92.436 45.944
IOM 39.322 19.544
ASH 24.933 -0.443
GAS 333.892 32.805

TOTAL 1003.191 102.634

7. CLOSURE 100.531
% CONVERSION 80.456

NORMALIZED
OUTPUT

GRANS NET YIELDS
COMPONENT OUT UTZ MAF LIG

H20 74.897 -12.773
OIL 435.004 16.212
SRL 91.948 45.701
IOM 39.114 19.441
ASH 24.801 -0.509
GAS 332.128 31.928

TOTAL 997.891 100.000

X CLOSURE 100.000
% CONVERSION 80.559

TIME 0.2 SECS
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RUN NUMBER N4 DATE 31682

INPUT

C0NP0NENT 6RANS IN

NAF LIGNITE 198.715
H20 99.357
ASH 25.499
HAO-61 397.429
GAS 267.895

TOTAL 988.894

OUTPUT

GRANS NET Y1ELIS
COMPONENT OUT UTZ NAF LIG

H20 80.124 - 9 . 6 7 9
OIL 437.993 20.413
SRL 90.826 45.707
ION 32.835 16.524
ASH 25.421 -0.039
GAS 326.472 29.478

TOTAL 993.671 102.404

Z CLOSURE 100.483
Z CONVERSION 83.476

NORMALIZED
OUTPUT

GRANS NET YIELIS
COMPONENT OUT UTZ NAF LIG

H20 79.739 -9.872
OIL 435.887 19.354
SRL 90.390 45.487
ION 32.677 16.444
ASH 25.299 -0.101
GAS 324.903 28.688

TOTAL 988.894 100.000

Z CLOSURE 100.000
Z CONVERSION 83.556

TINE 0.2 SECS
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RUN NUMBER N5 DATE 32382

INPUT

COMPONENT GRANS IN

NAF LIGNITE 199.322
H20 99.661
ASH 25.573
HAO-61 398.644
GAS 267.887

TOTAL 991.087

OUTPUT

GRAMS NET YIELDS
COMPONENT OUT UTZ NAF LIG

H20 58.753 -20.523
OIL 451.478 26.507
SRL 80.643 40.458
ION 18.187 9.125
ASH 25.639 0.033
GAS 354.904 43.656

TOTAL 989.603 99.256

X CLOSURE 99.850
X CONVERSION 90.875

NORMALIZED
OUTPUT

GRAMS NET YIELDS
COMPONENT OUT UTZ NAF LIG

H20 58.841 -20.479
OIL 452.154 26.846
SRL 80.763 40.519
IOM 18.214 9.138
ASH 25.677 0.052
GAS 355.436 43.923

TOTAL 991.086 100.000

X CLOSURE 100.000
X CONVERSION 90.862

TINE 0.2 SECS
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RUN NUMBER N6 DATE 33182

INPUT

COMPONENT 6RAMS IN

NAF LIGNITE 199.810
H20 99.905
ASH 25.663
HAO-61 399.621
GAS 266.958

TOTAL 991.957

OUTPUT

GRAMS NET YIELDS
COMPONENT OUT UTZ NAF LIG

H20 54.109 -22.920
OIL 455.506 27.969
SRL 78.223 39.149
IOM 17.341 8.679
ASH 25.320 -0.172
GAS 334.751 33.929

TOTAL 965.250 86.634

X CLOSURE 97.308
X CONVERSION 91.321

NORMALIZED
OUTPUT

GRAMS NET YIELDS
COMPONENT OUT UTZ HAF LIG

H20 55.606 -22.171
OIL 468.109 34.277
SRL 80.388 40.232
IOM 17.821 8.919
ASH 26.021 0.179
GAS 344.013 38.564

TOTAL 991.957 100.000

X CLOSURE 100.000
X CONVERSION 91.081

TIME 0.2 SECS
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RUN NUMBER M7 DATE 60482

INPUT

COMPONENT GRANS IN

NAF LIGNITE 200.443
H20 100.221
ASH 25.730
HAO-61 400.886
GAS 267.899

TOTAL 995.178

OUTPUT

GRAMS NET YIELDS
COMPONENT OUT UTZ NAF LIG

H20 43.302 -28.397
OIL 446.000 22.507
SRL 85.591 42.701
10M 17.162 8.562
ASH 26.286 0.277
GAS 367.507 49.694

TOTAL 985.846 95.344

X CLOSURE 99.062
X CONVERSION 91.438

NORMALIZED
OUTPUT

GRAMS NET YIELDS
COMPONENT OUT UTZ NAF LIG

H20 43.712 -28.192
OIL 450.222 24.613
SRL 86.401 43.105
IOM 17.324 8.643
ASH 26.534 0.402
GAS 370.986 51.430

TOTAL 995.178 100.000

X CLOSURE 100.000
X CONVERSION 91.357

TIME 0.2 SECS
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COMPARISON BETWEEN THE NORMALIZED NET YIELDS OF RUN M6 AND THE 

NET YIELDS FOR RUN M6 CALCULATED BY ASSUMING 

ALL LOST MATERIAL WAS PRODUCT GAS



www.manaraa.com

90

TABLE 7

COMPARISON BETWEEN THE NORMALIZED NET YIELDS OF RUN M6 AND THE NET YIELDS 
FOR RUN M6 CALCULATED BY ASSUMING ALL LOST MATERIAL 

WAS PRODUCT GAS

Net Yields as Wt % MAF 1ign ite Charged

Run # h2o Oil SRL IOM Ash
°/pa - >°

Conversion

M6a -22.2 34.3 40.2 8.9 0.2 38.6 91.1

M6b -22.9 28.0 39.1 8.7 -0.2 47.3 91.3

a - Normalized Net Yields

b - Net Yields determined by assuming all lost material was

product gas
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u.s. United States

H/C Hydrogen to Carbon Ratio

EDS Exxon Donor Solvent Process

SRC Solvent Refined Coal Process

CO-STEAM Carbon Monoxide and Steam

PETC Pittsburgh Energy Technology Center
Min. Minute

psig

°C

Pounds per square inch, gauge 

Degrees Celcius

CPU Continuous Process Unit

lb. Pound

hr. Hour

UND University of North Dakota

Co. Company

U.S.D.I. United States Department of Interior

PDU Process Development Unit

SRL Solvent Refined Lignite

GFETC Grand Forks Energy Technology Center

THF Tetrahydrofuran

HAO-61 Hydrogenated Anthracene Oil from Run 61

AO-4 Anthracene Oil - Batch 4

C.P. Chemical Pure

psi 

gal. 

ASTM

Pounds per square inch 

Gal 1 on

American Society of Testing Materials

MAF Moisture-Ash free

cu. Cubic

ft.

A

Feet

Angstrom

gm, gms Grams

Mg
IOM

Mil 1igrams

Insoluble Organic Matter

et al. And others
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